Cuatro expertos en inteligencia artificial, Premio Princesa de Asturias de Investigación Científica y Técnica
CULTURA
Geoffrey Hinton, Yann LeCun y Yoshua Bengio son considerados los padres de una técnica esencial de la inteligencia artificial, el aprendizaje profundo, mientras que Demis Hassabis es CEO y cofundador de DeepMind, una de las mayores compañías de investigación en inteligencia artificial del mundo
15 jun 2022 . Actualizado a las 12:27 h.Los científicos expertos en inteligencia artificial Geoffrey Hinton, Yann LeCun, Yoshua Bengio y Demis Hassabis, han sido galardonados con Premio Princesa de Asturias de Investigación Científica y Técnica 2022. El jurado ha leído el fallo este miércoles en el Hotel Eurostars de la Reconquista de Oviedo.
Esta candidatura ha sido propuesta por Bart Selman, presidente de la Asociación para el Desarrollo de la Inteligencia Artificial de la Universidad Cornell (Estados Unidos). Geoffrey Hinton, Yann LeCun y Yoshua Bengio son considerados los padres de una técnica esencial de la inteligencia artificial, el 'deep learning' o aprendizaje profundo, el cual se basa en el uso de redes neuronales para el reconocimiento de voz, la visión por ordenador y el procesamiento del lenguaje natural, y ha logrado avances en campos tan diversos como la percepción de objetos y la traducción automática. Estas redes neuronales pretenden imitar el funcionamiento del cerebro humano, utilizando algoritmos que convierten el proceso biológico del aprendizaje en secuencias matemáticas. Se trata de que la máquina aprenda de su propia experiencia.
En 1986, Hinton inventó los algoritmos de retropropagación, fundamentales para el entrenamiento de redes neuronales. Con ellos, en 2012 consiguió crear una red neuronal convolucional llamada AlexNet, compuesta por 650 000 neuronas y entrenada con 1,2 millones de imágenes, que registró tan solo un 26 % de errores en el reconocimiento de objetos y redujo a la mitad el porcentaje de sistemas anteriores. Ha aportado otras contribuciones a las redes neuronales artificiales y su entrenamiento, como la cocreación de la máquina de Boltzmann, la máquina de Helmholtz y el llamado producto de expertos. En 2021 publicó en la plataforma de preprints arXiv un documento en el que presentó GLOM, un innovador proyecto, aún teórico, que supone un nuevo modelo vectorial para procesar y representar la información visual en una red neuronal, que aún está en fase de desarrollo.
Por su parte, Yann LeCun hizo aportaciones al desarrollo de los algoritmos de retropropagación que Hinton había inventado y en 1989 creó LeNet- 5, un sistema de reconocimiento de caracteres escritos en cheques bancarios, que supuso un gran avance para la tecnología de reconocimiento óptico de caracteres.
A su vez, Bengio ha hecho contribuciones clave en modelos probabilísticos de secuencias, utilizados para el reconocimiento de voz y de escritura y en aprendizaje no supervisado. Actualmente, estudia algoritmos más eficientes en representaciones de datos, extrayendo reconocimiento de patrones y también permitiendo el entendimiento de relaciones más complejas y conceptos de alto nivel.
Demis Hassabis es CEO y cofundador de DeepMind, una de las mayores compañías de investigación en inteligencia artificial del mundo, creada en 2011 y adquirida en 2014 por Google (Premio Príncipe de Asturias de Comunicación y Humanidades 2008). Hassabis ha creado con DeepMind un modelo de red neuronal que combina las capacidades de una red neuronal artificial con la potencia algorítmica de un ordenador programable. Edith Heard, directora del Laboratorio Europeo de Biología Molecular, declaró que el logro era «una auténtica revolución para las ciencias de la vida, como lo fue la genómica hace décadas». Hinton, LeCun y Bengio fueron reconocidos en 2018 con el Premio Turing que concede la Association for Computing Machinery.
Las biografías de los premiados
Geoffrey Hinton (Londres, Reino Unido, 6 de diciembre de 1947) se graduó en Psicología Experimental en la Universidad de Cambridge en 1970 y se doctoró en Inteligencia Artificial por la Universidad de Edimburgo en 1975. Desde 2013, colabora con Google en el desarrollo de aplicaciones de deep learning como vicepresidente, y es Asesor Científico Principal en el Vector Institute de Canadá. Es autor o coautor de más de trescientas publicaciones, acumula 572 982 citas y tiene un índice h de 169, según Google Scholar.
Yann LeCun (Soisy-sous-Montmorency, Francia, 8 de julio de 1960) se graduó en Ingeniería Eléctrica en la Escuela Superior de Ingenieros en Electrotécnica y Electrónica de París en 1983 y se doctoró en Ciencias de la Computación por la Universidad Pierre et Marie Curie (París) en 1987. Es director de investigación de inteligencia artificial en Facebook y mantiene su actividad académica en la Universidad de Nueva York, vinculado al Center for Data Science (que fundó y dirigió entre 2012 y 2014) y al Courant Institute of Mathematical Science. Es miembro del comité asesor del Instituto de Matemáticas Puras y Aplicadas y del Instituto de Investigación Computacional y Experimental en Matemáticas (ICERM).
LeCun es autor o coautor de más de trescientas publicaciones, que acumulan 248 571 citas, y tiene un índice h de 135, según Google Scholar. Es miembro de la Academia Nacional de Ingeniería de EEUU y ha recibido numerosos premios, como el IEEE Neural Network Pioneer Award (2014), el de Investigador Distinguido IEEE PAMI (2015) y el Pender de la Universidad de Pensilvania (2018), además del Premio Turing mencionado anteriormente.
Yoshua Bengio (París, Francia, 5 de marzo de 1964) se graduó en Ingeniería Informática en 1986 en la Universidad McGill (Canadá), donde también cursó un máster y se doctoró en Ciencias de la Computación. Cumplió estudios postdoctorales en el Instituto de Tecnología de Massachusetts (MIT, por sus siglas en inglés) y en los AT&T Bell Laboratories, junto al grupo de LeCun. Desde 1993 es profesor en el Departamento de Ciencias de la Computación e Investigación Operativa de la Universidad de Montreal. Además de ocupar la cátedra de Investigación de Canadá en Algoritmos de Aprendizaje Estadístico, es fundador y director científico de Mila, el Instituto de Inteligencia Artificial de Quebec, cofundador de la empresa emergente Element AI y asesor de varias empresas de tecnología.
Es también director científico del Institut de Valorisation des Données (IVADO) y copresidente, desde 2019, del Consejo Asesor de Canadá en Inteligencia Artificial. Bengio ha publicado más de seiscientos artículos y cuenta con 532 373 citas y un índice h de 205, según Google Scholar. Oficial de la Orden de Canadá y Caballero de la Legión de Honor de Francia, es miembro de la Royal Society of Canada (2017).
Demis Hassabis nació en Londres (Reino Unido) el 27 de julio de 1976. Niño prodigio del ajedrez (a los trece años era ya un reconocido jugador) y apasionado de la programación, a los diecisiete se unió a la compañía Bullfrog Productions como diseñador de videojuegos, donde creó juegos de éxito como Theme Park. Estudió en la Universidad de Cambridge, en la que se graduó en 1997 en Ciencias de la Computación, y en 1998 fundó la empresa de videojuegos Elixir Studios, con la que creó proyectos para multinacionales como Microsoft o Vivendi.
En 2011, con el apoyo de inversores como Elon Musk, fundó la empresa de inteligencia artificial DeepMind Technologies, con la que comenzó a crear algoritmos de aprendizaje para dominar videojuegos, como AlphaGo (que en poco tiempo logró derrotar a Lee Sedol, campeón mundial del juego de origen chino Go), AlphaZero, para progresar en el desarrollo de un sistema de aprendizaje de inteligencia artificial, considerado por algunos expertos como revolucionario, pues combina el funcionamiento neuronal humano y las conexiones entre la memoria y la imaginación con los mecanismos de aprendizaje de las máquinas.
Con otra de esas variantes, AlphaFold, ha logrado, como se ha dicho, transformar el estudio de la estructura 3D de las proteínas. Tras la adquisición de DeepMind por Google, en 2014, Hassabis ha sido su director ejecutivo. Acumula 79.960 citas y tiene un índice h de 73, según Google Scholar, informa Europa Press.
El jurado
El jurado del Premio Princesa de Asturias de Investigación Científica y Técnica 2022 ha resaltado el impacto «extraordinario» de esta rama científica para el progreso de la sociedad.
Sus aportaciones al desarrollo del aprendizaje profundo (deep learning) suponen para el jurado un gran avance en técnicas tan diversas como el reconocimiento de voz, el procesamiento del lenguaje natural, la percepción de objetos, la traducción automática, la optimización de estrategias, el análisis de la estructura de las proteínas o el diagnóstico médico, entre muchas otras. «Su impacto actual y futuro en el progreso de la sociedad puede ser calificado de extraordinario», ha concluido el acta leída por Echenique este mediodía en Oviedo, informa EFE.
La candidatura de estos cuatro científicos fue propuesta por el presidente de la Asociación para el Desarrollo de la Inteligencia Artificial de la Universidad Cornell (Estados Unidos), Bart Selman.